
Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 1 of 16

Literature Review
A Case Study: Refining the SDLC Method, Improving the Quality

and Accelerating the Software Development at BRI
By Irfan Syukur

1. Introduction

PT. Bank Rakyat Indonesia (BRI) is the most profitable bank and the largest banks in Indonesia

that specializes in Micro, Small and Medium Enterprises (MSME). The official website of BRI

[1] reported, as of December 2014, BRI serves its customers through more than 10,000 outlets

(divisions, main branch, sub branch, micro units), 150,000 electronic outlets (ATMs, CDMs,

EDCs) and 120,000 professional employees that spreads all over Indonesia. Most of its

customers; the recent data showed that BRIs customers reach approximately 55.7 million; are

lower-middle income people such as land workers, fishermen, factory workers, small businesses

and government employees. As one of the state-owned banks and a bank that has the widest

network in Indonesia, BRI is always chosen by the government as an agency to distribute social

aid funds and enacting social programs of the government in economic empowerment. To

provide the best service for citizen that spread all over Indonesia, no doubt, that

technologyinfrastructure and systems plays a very important role. With powerful and good

technology provided by BRI, it ensures that all goals, as a business company and a government

agent, will be achieved.

The Information Technology Division as one entity of BRI’s organizational structure is

responsible for providing, executing, monitoring and maintaining the whole technology required

for all business and operation activities. In connection with the great and the high complexity of

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 2 of 16

BRI, it requires a tremendous effort to provide technology that cost-efficient, effective, and of

high quality. A methodology or procedure is needed to help and ensure the stakeholder to design,

control and monitor every project of technology being executed to achieve predetermined

objectives. The methodology or procedure is known in IT industry as a System Development

Life Cycle (SDLC). The SDLC method /model is basically a project management tool that is

used to plan, execute, and control systems development projects and it is also important to

understand that these are just models; they do not represent the total system [6, pp. 2]. Therefore,

the purpose of this article is to review literature related to the SDLC methods. While no

document could cover all the varieties of SDLC methodologies, this article tries to categorize

the predominant practices in use today, so as give a practical understanding of various forms of

SDLC in use and provide an alternative approach in selecting and implementing SDLC in a

particular project. As a case study, this article focuses on BRI’s system software development

projects.

2. The Important of SDLC Methods

As defined by [6, pp. 2], System development life cycle (SDLC) is an approach to develop an

information system or software product that is characterized by a linear sequence of steps that

progress from start to finish without revisiting any previous step. The SDLC methodologies all

focus on the common goal of defining steps or phases and processes from the beginning of a

project through its successful completion and beyond. The SDLC aims to produce high quality

software that meets or exceeds customer expectations, reaches completion within times and cost

estimates. As described by [2, pp. 1], the SDLC provides a structure so that team members and

all project stakeholders understand the current state of the project. Additionally, it supports

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 3 of 16

visibility and predictability while enabling project teams to make specific choices that achieve

the business goals and constraints.

Many SDLC models have been proposed so far and each of them have some advantages as well

as some disadvantages as shown in Table 1 and Table 2. A few important and commonly used

SDLC methods are waterfall (it was and still is, the foundation for all methodologies),

incremental, iterative / evolutionary, V-shaped, rapid application (RAD) and spiral. Actually

there are only three basic methodswaterfall, incremental and iterative model. The other

methods are only the derivative, enhancement or mixture from those basics. From [2][4][5] and

[6], it can be concluded that most SDLC’s could be divided into several phases or steps, which

are : planning and requirement analysis, design, implementation, testing and maintenance and

operational.

Many software developments have evolved over the years and It is important to understand that

one of SDLC method is not necessarily suitable for use by all projects. Each of the available

methods is best suited to specific kinds of projects [3, pp. 1]. Methods, as explained by [6, pp. 2],

reflect the structure of the organization, its management style, the relative importance it attaches

to quality, timeliness, cost and benefit, its experience and its general ability levels, and many

other factors. There should not be any standard method because companies are unique. The

project team must select a suitable SDLC method for the particular project and then adhere to it.

[8, pp.1] claimed that without using of a particular method, the development of a software

product would not be in a systematic and disciplined manner; it would lead to chaos and project

failure.

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 4 of 16

3. Selecting an SDLC Method

From a study [6, pp. 1], improving the quality and reducing the cost of products are fundamental

goals of software process method selection. While selecting the right SDLC methodology is

challenging, the challenge is not insurmountable. With a clear understanding of the business and

a framework for guidance, selecting a fitting SDLC can be readily achieved. [2, pp. 264]

believed that a proper methodology in a maturing environment will enable the business to build

software that assists the business in realizing its value proposition. The method being selected,

must give control over complexity (feature, content and architecture), sizing (point solution,

departmental or enterprise), service level (ad hoc, reliable and mission critical) and delivery (buy

vs. build decisions) [4, pp. 11). These are not simple challenges and the selection of a method to

accommodate these demands is critical to the success of the projects. The main issues in

selecting an SDLC method is to take the position that organizations can benefit from following a

formal process for identifying and selecting projects [6, pp. 1] and only few organizations know

what criteria to use in selecting a method to add value to the organizations [4, pp. 11]. Regarding

to those issues, this article presents two different approaches in selecting an SDLC method.

3.1. D3 Cube (Decision Cube)

With value propositions linked so tightly to SDLC method, the organizations have to select and

utilize the method that aligns with their predetermined objectives. [4, pp. 13] recommended The

D3 Cube (Decision Cube)as shown in Figure 2 as a framework that provides a common

approach to selecting an SDLC method. As shown in Figure 1, there are three

criteriafunctionality, budget and time. Each of which map to a specific element of business

value and, when combined, form the basis for selecting an SDLC method to optimize value to

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 5 of 16

the business. To use the Decision Cube simply plot the project or organizational project style

along the appropriate axis for each of the three criteria. The resultant quadrant is the

recommended method. Unfortunately, there will always be anomalies on those projects. When a

selected method is considered less meet predetermined criteria, the organizations can shift the

recommended method into the nearest quadrant of the recommendation [4, pp. 17]. The point is,

for any change in the method, it allowed moving only one quadrant in any direction, as shown in

Figure 3.

3.2. Project Characteristic

From time to time, many software process models have been developed in order to maintain

reliability and quality of software. To achieve those objectives, another approach in selecting an

SDLC method was suggested by [6], which is “Project characteristic”. This approach divides

categories into three project characteristicsproject team, user community, and project type and

risk. Each of them is measured in 0-10 rating. Further, comparison tables are designed on three

project Characteristic categories as shown in Table 3, 4 and 5. Moreover, based on observation,

comparison and experience that described in those tables, suggested methods are prepared for

each characteristic category as shown in Table 6, 7 and 8.

4. The Implementation of SDLC Method at BRI

As declared by [9, pp. 2], to support the development of information technology at BRI, it needs

a guideline that could be used as reference upon the development of IT systems. The

development of BRIs systems uses an SDLC methodology. In the methodology, the stage of

development of IT systems is divided into initiation, planning, requirements definition, design,

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 6 of 16

programming, testing, implementation, post-implementation review, maintenance, and disposal

if the system will not be used again. The previous SDLC guidelines had been implemented since

January 2006. Regarding to the change of the organizational structure of the IT Division and the

development of technology and information systems used in BRI, and the new regulations of the

Central Bank, the IT system development guidelines need to be adjusted in order to remain

applicable and auditable. Although it is not precisely defined, the new SDLC method adopts the

waterfall method with adding some iteration at certain stages.

In line with the business and operational needs, it requires many new and the current systems

that have to be developed or enhanced. However, because of the limitation in human resources,

the tight of time schedule, the lack of management and the lack well communication between the

users (business and operation divisions) and IT Division, many of the development projects

could not meet the criteria expected, in term of the time schedule and the system quality. With

those facts, it appears that the waterfall method being implemented by BRI is insufficient and

ineffective to cope with the trends. Considering to those issues, this article’s objective is to

provide an alternative solution that could be used as a reference based on the literature reviews.

5. Waterfall and Agile Methods

The main reason why BRI chose the waterfall as its SDLC method was that as a bank, public and

state company, “auditable” and well documented is an obligation. BRI has to responsible and

report on all its activities. Waterfall method provides those benefits, as shown in Table 1. The

classical waterfall model is an idealistic one since it assumes that no development error is ever

committed by all the team project members and the users during any of the SDLC phases.

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 7 of 16

However, in practical development environments, it is impossible to avoid such circumstances.

Because of its inflexibility [Table 1], less adaptability [8, pp. 9-10][6, pp. 6] and misassumptions

related to the method [7], this ‘waterfall’ could not follow the development of the ongoing trend

at BRI.

Base on these issues, another SDLC method is proposed, which are the agile methods. Agile

Methods are a reaction to traditional ways of developing software and acknowledge the “need for

an alternative to documentation driven, heavyweight software development processes” [11].

Agile development is not a methodology in itself. It is an umbrella term that describes several

agile methodologies—for example : Scrum, XP, Crystal, FDD, and DSDM [10].

As illustrated by [12], Agile methods are based on adaptive software development methods,

while traditional SDLC models (waterfall model, for example) are based on a predictive

approach. In traditional SDLC models, teams work with a detailed plan and have a full list of

characteristics and tasks that must be completed in the next few months or the entire life cycle of

the product. Predictive methods completely depend on the requirement analysis and careful

planning at the beginning of the cycle. Any change that is to be included will go through a strict

change control management and prioritization. The agile model uses an adaptive approach where

there is no detailed planning and only clear future tasks are those related to the characteristics

that must be developed. The team adapts to dynamic changes in the product requirements. The

product is frequently tested, minimizing the risk of major faults in the future. Interaction with the

clients is the strong point of agile methodology and open communication and minimal

documentation are typical characteristics of the agile development environment. Or in other

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 8 of 16

words, agile methods are adaptive rather than predictive and people-oriented rather than process-

oriented.

6. Conclusion

The waterfall method that has been used by BRI, less relevant to the ongoing trend and has to be

exchanged or enhanced. As recommended by the Decision Cube approach, the waterfall only

could move to Incremental or Spiral method. However, according to Table 1 and Table 2, these

methods also have weaknesses that still insufficient to cope with the trends. The Agile methods

come up and provide an alternative solution; the advantages and the weakness of these methods

explained in Table 9. Unfortunately, considering to the scale and the organizational complexity

of BRI, the movement of the SDLC method from the waterfall to the agile would give a

tremendous cost, efforts and implementation time to BRI. As an alternative, the waterfall and the

agile methods could be combined, optimizing the advantages of each of the methods and

minimizing the weaknesses of each of them. The final objectives are to get an method that

auditable, well documented, flexible and adaptable.

As a literature review, this article presents and offers an alternative approach related to the

current issues faced by BRI on its software development projects. However, it still needs further

in-depth research to ensure the right method for BRI.

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 9 of 16

References:
[1] “PT. BRI Corporate Profile”, [online] 2015, http://phx.corporate-

ir.net/phoenix.zhtml?c=148820&p=irol-homeProfile, (Accessed: 3 April 2015)
[2] Ms Namrata Jain and Anurag Jain, "Software Development Life Cycle: A Detailed Study",

International Journal of Advanced Research in Computer Science, vol. 2, no 3, pp. 261-
264, May 2011

[3] Center for Medicare & Medicaid Services. (2008, Feb. 27), Selecting a Development
Approach. [Online]. Available: http://www.cms.gov/Research-Statistics-Data-and-
Systems/CMS-Information-
Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf

[4] Alan E.Dillman. (2008), Understanding and Selecting Systems Development Life Cycle
(SDLC) Methodologies. [Online]. Available:
http://www.menyaltd.com/Portals/7/Understanding%20and%20Selecting%20SDLC%20M
ethodologies.pdf

[5] Neha Budhija and Satinder Pal Ahuja, "Study of Software Process Model Selection",
International Journal of Advanced Research in Computer Science, vol. 2, no 6, pp. 279-
282, Nov./Dec. 2011.

[6] Transseed Group. (2015), System Development Life Cycle. [Online]. Available:
http://www.transseed.com/downloads/TRS%20-
%20Systems%20Devlopment%20Life%20Cycle.pdf

[7] InfoQ.com. (2015). [Online]. Available: http://www.infoq.com/resource/articles/scaling-
software-agility/en/resources/ch02.pdf

[8] NPTEL. (2015). [Online]. Available: http://www.nptel.ac.in/courses/Webcourse-
contents/IIT%20Kharagpur/Soft%20Engg/pdf/m02L03.pdf

[9] Nokep: S. 217-DIR/TSI/10/2011. (2011, Oct). Prosedur Siklus Pengembangan Sistem TI
PT. Bank Rakyat Indonesia (Persero), Tbk.

[10] Monjurul Habib. (2013, Dec 30). Agile software development methodologies and how to
apply them [Online]. Available: http://www.codeproject.com/Articles/604417/Agile-
software-development-methodologies-and-how-t

[11] Beck K., Cockburn A., Jeffries R., Highsmith J., “Agile manifesto”,
http://www.agilemanifesto.org, 2001, 12-4-2002.

[12] Marian STOICA, Marinela MIRCEA and Bogdan GHILIC-MICU, "Software
Development: Agile vs. Traditional", Informatica Economica, vol. 17, no 4/2013, Apr.
2013.

[13] Sheetal Sharma, Darothi Sarkar, and Divya Gupta, " Agile Processes and Methodologies: A
Conceptual Study", International Journal on Computer Science and Engineering (IJCSE),
vol. 4, no 5, May. 2012.

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 10 of 16

Figure 1. Business Value Proposition [5].

There are the goals to be achieved by all business
projects [5].

Figure 2. D3 Cube
These are three selection criteriafunctionality,

budget and time each of which map to a specific
element of business value and, when combined,
form the basis for selecting an SDLC methodology
to optimize value to the business [5].

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 11 of 16

Figure 3.
Any proposed changes in methodology,
it is advisable to shift only one quadrant
from the current methodology [5].

Table 1. The strengths and weaknesses for the most important and popular software
development methods (SDLC) [3].

Methods Strengths Weaknesses
Waterfall Ideal for supporting less experienced project

teams and project managers, or project teams
whose composition fluctuates.

 The orderly sequence of development steps
and strict controls for ensuring the adequacy
of documentation and design reviews helps
ensure the quality, reliability, and
maintainability of the developed software.

 Progress of system development is
measurable.

 Conserves resources.

 Inflexible, slow, costly and cumbersome due
to significant structure and tight controls.

 Project progresses forward, with only slight
movement backward.

 Little room for use of iteration, which can
reduce manageability if used.

 Depends upon early identification and
specification of requirements, yet users may
not be able to clearly define what they need
early in the project.

 Requirements inconsistencies, missing
system components, and unexpected
development needs are often discovered
during design and coding.

 Problems are often not discovered until
system testing.

 System performance cannot be tested until
the system is almost fully coded, and under-
capacity may be difficult to correct.

 Difficult to respond to changes. Changes that
occur later in the life cycle are more costly
and are thus discouraged.

 Produces excessive documentation and
keeping it updated as the project progresses is
time-consuming.

 Written specifications are often difficult for
users to read and thoroughly appreciate.

 Promotes the gap between users and

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 12 of 16

developers with clear division of
responsibility.

Iterative “Addresses the inability of many users to
specify their information needs, and the
difficulty of systems analysts to understand
the user’s environment, by providing the user
with a tentative system for experimental
purposes at the earliest possible time.”

 “Can be used to realistically model important
aspects of system during each phase of the
traditional life cycle.”

 Improves both user participation in system
development and communication among
project stakeholders.

 Especially useful for resolving unclear
objectives; developing and validating user
requirements; experimenting with or
comparing various design solutions; or
investigating both performance and the
human interface.

 Potential exists for exploiting knowledge
gained in an early iteration as later iterations
are developed.

 Helps to easily identify confusing or difficult
functions and missing functionality.

 May generate specifications for a production
application.

 Encourages innovation and flexible designs.
 Provides quick implementation of an

incomplete, but functional, application.

 Approval process and control is not strict.
 Incomplete or inadequate problem analysis

may occur whereby only the most obvious
and superficial needs will be addressed,
resulting in current inefficient practices being
easily built into the new system.

 Requirements may frequently change
significantly.

 Identification of non-functional elements is
difficult to document.

 Designers may prototype too quickly, without
sufficient up-front user needs analysis,
resulting in an inflexible design with narrow
focus that limits future system potential.

 Designers may neglect documentation,
resulting in insufficient justification for the
final product and inadequate records for the
future.

 Can lead to poorly designed systems.
Unskilled designers may substitute
prototyping for sound design, which can lead
to a “quick and dirty system” without global
consideration of the integration of all other
components. While initial software
development is often built to be a
“throwaway”, attempting to retroactively
produce a solid system design can sometimes
be problematic.

 Can lead to false expectations, where the
customer mistakenly believes that the system
is “finished” when in fact it is not; the system
looks good and has adequate user interfaces,
but is not truly functional.

 Iterations add to project budgets and
schedules, thus the added costs must be
weighed against the potential benefits. Very
small projects may not be able to justify the
added time and money, while only the high-
risk portions of very large, complex projects
may gain benefit from prototyping.

 Prototype may not have sufficient checks
and balances incorporated.

Incremental Potential exists for exploiting knowledge
gained in an early increment as later
increments are developed.

 Moderate control is maintained over the life
of the project through the use of written
documentation and the formal review and
approval/signoff by the user and information
technology management at designated major
milestones.

 When utilizing a series of mini-Waterfalls for
a small part of the system before moving on
to the next increment, there is usually a lack
of overall consideration of the business
problem and technical requirements for the
overall system.

 Since some modules will be completed much
earlier than others, well-defined interfaces are
required.

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 13 of 16

 Stakeholders can be given concrete evidence
of project status throughout the life cycle.

 Helps to mitigate integration and
architectural risks earlier in the project.

 Allows delivery of a series of
implementations that are gradually more
complete and can go into production more
quickly as incremental releases.

 Gradual implementation provides the ability
to monitor the effect of incremental changes,
isolate issues and make adjustments before
the organization is negatively impacted.

 Difficult problems tend to be pushed to the
future to demonstrate early success to
management.

V-model • Simple and easy to use.
• Testing activities like planning, test

designing happens well before coding. This
saves a lot of time. Hence higher chance of
success over the waterfall model.

• Proactive defect tracking – that is defects are
found at early stage.

• Avoids the downward flow of the defects.
• Works well for small projects where

requirements are easily understood.

 Very rigid and least flexible.
 Software is developed during the

implementation phase, so no early prototypes
of the software are produced.

 If any changes happen in midway, then the
test documents along with requirement
documents has to be updated.

Spiral Enhances risk avoidance.
 Useful in helping to select the best

methodology to follow for development of a
given software iteration, based on project
risk.

 Can incorporate Waterfall, Prototyping, and
Incremental methodologies as special cases
framework, and provide guidance as to which
combination of these models best fits a given
software iteration, based upon the type of
project risk. For example, a project with low
risk of not meeting user requirements, but
high risk of missing budget or schedule
targets would essentially follow a linear
Waterfall approach for a given software
iteration. Conversely, if the risk factors were
reversed, the Spiral methodology could yield
an iterative Prototyping approach.

 Challenging to determine the exact
composition of development methodologies
to use for each iteration around the Spiral.

 Highly customized to each project, and thus
is quite complex, limiting reusability.

 A skilled and experienced project manager is
required to determine how to apply it to any
given project.

 There are no established controls for moving
from one cycle to another cycle. Without
controls, each cycle may generate more work
for the next cycle.

 There are no firm deadlines. Cycles continue
with no clear termination condition, so there
is an inherent risk of not meeting budget or
schedule.

 Possibility exists that project ends up
implemented following a Waterfall
framework.

RAD The operational version of an application is
available much earlier than with Waterfall,
Incremental, or Spiral frameworks.

 Because RAD produces systems more
quickly and to a business focus, this approach
tends to produce systems at a lower cost.

 Engenders a greater level of commitment
from stakeholders, both business and
technical, than Waterfall, Incremental, or
Spiral frameworks. Users are seen as gaining
more of a sense of ownership of a system,

 More speed and lower cost may lead to lower
overall system quality.

 Danger of misalignment of developed system
with the business due to missing information.

 Project may end up with more requirements
than needed (gold-plating).

 Potential for feature creep where more and
more features are added to the system over
the course of development.

 Potential for inconsistent designs within and

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 14 of 16

while developers are seen as gaining more
satisfaction from producing successful
systems quickly.

 Concentrates on essential system elements
from user viewpoint.

 Provides the ability to rapidly change system
design as demanded by users.

 Produces a tighter fit between user
requirements and system specifications.

 Generally produces a dramatic savings in
time, money, and human effort.

across systems.
 Potential for violation of programming

standards related to inconsistent naming
convention and inconsistent documentation.

 Difficulty with module reuse for future
systems.

 Potential for designed system to lack
scalability.

 Potential for lack of attention to later system
administration needs built into system.

 High cost of commitment on the part of key
user personnel.

 Formal reviews and audits are more difficult
to implement than for a complete system.

 Tendency for difficult problems to be pushed
to the future to demonstrate early success to
management.

 Since some modules will be completed much
earlier than others, well-defined interfaces are
required.

Table 2. The advantages and disadvantages of the most and popular SDLC methods [4].

Methodology & Criteria Advantages Disadvantages

Waterfall Cleary define phases
 Assures delivery of initial

requirements
 Well documented process and results

 Lack of measurable progress with
phases
 Cannot accommodate changing

requirements
 Resistant to time and/or budget

compression

Budget : High
Time : Long
Functionality : Static

Incremental Early and periodic results
 Measurable progress
 Supports parallel developments

processes

 Demands increased management
attention
 Can increase resource requirements
 No support for changing requirements

Budget : High
Time : Long
Functionality : Static
Or
Budget : High
Time : Long
Functionality : Static

Iterative Supports changing requirements
 Minimize time to Initial Operating

Capability (IOC), a point in time
during the Production & Deployment
(PD) Phase where a system can meet
the minimum operational (Threshold
and Objective) capabilities for a user’s
stated need.
 Achieves economist of scale for

enhancements

 Increases management complexity (e.g.
number of business units, functions,
geographies and layer of managements)
 IOC is not complete
 Risk of not knowing when to end the

project

Budget : High
Time : Long
Functionality : Static

Spiral Supports changing requirements
 Allows for extensive use of prototype,

used to allow the users evaluate

 Increased management complexity
 Defer production capability to end of

the SDLC
Budget : High
Time : Long

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 15 of 16

Functionality : Static developer proposals and try them out
before implementation
 More accurate captures requirements

 Risk of not knowing when to end the
project

RAD Minimizes time to delivery
 Accommodates changing requirements
 Measures progress

 Increased management complexity
 Drives costs forwards in the SDLC
 Can increase resource requirements

Budget : High
Time : Long
Functionality : Static

Agile Rapid demonstrable functionality
 Minimal resource requirements
 Supports fixed of changing

requirements

 Not conducive to handling complex
dependencies
 Creates QA risks
 Increased risk of sustainability,

maintainability and extensibility

Budget : High
Time : Long
Functionality : Static
Or
Budget : High
Time : Long
Functionality : Static

Table 3. Comparison based on project team [6].

Waterfall Spiral RAD Incremental
New to problem domain 1 9 1 3
New to technology domain 8 9 1 8
New to tools to be used 7 8 1 2
Any training available 2 1 8 9
Comfortable with structure 8 1 2 9
Closely track by manager 8 9 2 9

Table 4. Comparison Based On User Community [6].

Waterfall Spiral RAD Incremental
Availability of user representative restricted or
limited

9 2 2 7

Expert in problem domain 2 9 2 8
Want to track the project process 7 8 1 2
Want to involve in SDLC 2 9 2 8

Table 5. Comparison Based On Project Type and Risk [6].

Waterfall Spiral RAD Incremental
System integration project 2 8 7 9
Enhancement to an existing project 2 2 9 8
High reliability is must 7 9 8 2

Table 6. Suggested model base on team property [6].

S.N Project Team Member Suggested Model
1. New to problem domain Spiral
2. New to technology domain Spiral
3. New to tools to be used Spiral
4. Any training available Incremental
5. Comfortable with structure Waterfall

Irfan Syukur
Date : 4/11/2015

EAP 508-P01/001 Christina Brady and Sarah E. Baker Page 16 of 16

6. Closely track by manager Spiral

Table 7. Suggested model based on user community [6].

S.N User Communicate Suggested Model
1. Availability of user representative restricted or limited Waterfall
2. User representative new to the system definition Spiral
3. User representative expert in problem domain RAD
4. User representative want involve in SDLC RAD
5. User representative want to track project progress Spiral

Table 8. Suggested model base on project type and risk [6].

S.N Project type and risk Suggested Model
1. Integration project Incremental
2. Enhancement to an existing System RAD
3. The funding for project stable
4. Project reliability must Spiral

Table 9. The Advantages and Disadvantages of the Agile Methods [13]

The Advantages The Disadvantages
Adaptive to the changing environment Customer interaction is the key factor of developing

successful software
Ensures customer satisfaction Lack of documentation
Least documentation Time consuming and wastage of resources because of

constant change of requirements
Reduces risks of development More helpful for management than developer

